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Summary

In this paper the fully nonlinear theory of finite deformations of an

elastic solid is used to study the elastostatic field near the tip of a crack.

The special elastic materials considered are such that the differential equa-

tions governing the equilibrium fields may lose ellipticity in the presence

of sufficiently severe strains.

The first problem considered involves finite anti-plane shear (Mode III)

deformations of a cracked incompressible solid. The analysis is based on a

direct asymptotic method, in contrast to earlier approaches which have de-

pended on hodograph procedures.

The second problem treated is that of plane strain of a compressible

solid containing a crack under tensile (Mode I) loading conditions. The

material is characterized by the so-called Blatz-Ko elastic potential. Again,

the analysis involves only direct local considerations.

For both the Mode III and Mode I problems, the loss of equilibrium

ellipticity results in the appearance of curves ("elastostatic shocks") is-

suing from the crack-tip across which displacement gradients and stresses

are discontinuous. A (

The results comunicated in this paper were obtained in the course of an in-
vestigation supported by Contract N00014-75-C-0196 with the Office of Naval
Research.
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INTRODUCTION

Among a number of recent papers devoted to the study of the struc-
1

ture of finite elastostatic fields near the tip of a crack, the investi-

gations summarized in [4], [5] and [6] are concerned in particular with

elastic materials whose corresponding equilibrium equations are cr jable

of losing ellipticity at sufficiently severe strains. All three of these

papers treat the so-called "small-scale nonlinear crack problem" asso-

caited with the finite anti-plane shear (Mode I1) of an infinite slab

containing a crack of finite length and deformed to a state of simple

shear at infinity.

The principal feature of the results reported in [4], [5] and [6]

is the appearance of two curves, issuing from each crack-tip and termi-

nating in the interior of the body, across which the displacement gradi-

ent and the stresses are discontinuous. Such "elastostatic shocks" have

been discussed in general terms elsewhere [7].

The analysis in [4], [5] and [6] depends critically on the fact that

the finite anti-plane shear problem is governed by a second order quasi-

linear partial differential equation and can therefore be successfully

treated with the help of the hodograph transformation. For the more im-

portant problem of the plane deformation of a cracked slab by tensile

loading at infinity (the Mode I problem) the hodograph transformation is

not available because the associated quasi-linear system of differ-

ential equations is of the fourth order.

ISee [1), [2], [3] for reviews of recent work in this area.



-2-

In the present paper, we first show that the qualitative features

of the results in [4] and (5] for the Mode III crack problem can be ob-

tained by a direct local asymptotic analysis which makes no use of the

hodograph transformation. The advantage of the procedure used here lies

in its applicability to the plane strain Mode I problem which constitutes

our main objective. We determine the qualitative structure of the crack-

tip field in the latter problem for the so-called Blatz-Ko strain energy

density introduced in [8] in connection with experiments on ahighlycom-

pressible rubber-like material. It is known (see [9]) that this material

is capable of a loss of equilibrium ellipticity at severe deformations.

In Section I we quote pertinent results from the nonlinear equilib-

rium theory of homogeneous and isotropic elastic solids and we introduce

the special deformations and materials appropriate to this study. Sec-

tion 2 begins with the formulation of the Mode III crack problem dealt

with in [4]. We obtain the asymptotic representation near the crack-tip

of a number of solutions of the displacement equation of equilibrium

valid on overlapping domains. The final solution is then generated by

a consistent matching across two symmetrically located elastostatic

shocks. In Section 3 the tension crack problem is treated in an analo-

gous manner and we find the corresponding asymptotic solutions to lead-

ing order. Section 4 is devoted to higher order considerations and a

discussion of the results.
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1. PRELIMINARIES FROM NONLINEAR ELASTOSTATICS

In this section we present a brief summary of the equilibrium the-

ory of finitely deformed, homogeneous and isotropic elastic solids. The

two special deformations and materials relevant to this study are then

discussed.

Let k be an open region occupied by the interior of a body in its

undeformed configuration and denote by x the position vector of a ma-

terial point in R. A deformation of the body, indicated by

y=y(x)=x+u(x) for all xE%, (1.1)1

is a mappi;: of 9 onto a domain 6* in which u(x) is the displace-

ment field. We assume the transformation (1.1) to be invertible.

Let F be the deformation-gradient tensor field associated with

the mapping (1.1) and J its Jacobian determinant, so that

F=VY, J=detF>O on R . (1.2)

For an incompressible material the deformation must be locally volume

preserving, whence J--I on R. Define C and G by

C=F F , G=FFT (1.3)

These deformation tensors have common fundamental scalar invariants

given by

1Letters underlined by a tilde represent three-dimensional vectors and
tensors.

.,-.
!
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Ii=tr(O) , 12 = Utr0 2-tr(C ) , 13 =detC (1.4)

To continue, we let T be the actual (Cauchy) stress tensor field

on 9* and a the corresponding nominal (Piola) stress field on R;

T and a are related by

SJ...lFT , G=J. • (1.5)

The balance of linear momentum, in the absence of body forces, leads to

the following equivalent alternative forms of the local equilibrium

equations:

divT=0 on e or div =0  on R . (1.6)

Suppose 8 is a surface in P and 8* its deformation image in

9*. Let n and n* be the respective unit normals to 8 and 8* so

that the associated nominal and true surface tractions are given by

s=an on 8, t= Tn* on 8* (1.7)

It can be shown that

t=0 on 8* if and only if s=0 on 8 ; (1.8)

this proposition is important because it allows the boundary condition

on a traction free surface 8* to be specified on the undeformed sur-

face 9.

Let W be the stored energy per unit undeformed volume character-

istic of a given elastic material. For Lompressible materials
WW=W(II,I2 ,13) and the corresponding constitutive relation can be given
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in either of the following equivalent forms

2i

G+ EIG 22 +1 (1.9)1  '

+E CE C_(1.10)

where

0 0

E =2 + I aw E -2 aW

0

13 (1.11)

For incompressible materials, W=W(1,I 2) and the corresponding con-

stitutive law takes the form

2G)G G+ (I -P 1 (1.12)

or, equivalently,

(1 1 F -G (1.13)

Here P is the arbitrary hydrostatic pressure required to accommodate

the constraint J-v3=.

We now turn to two special classes of finite deformations: anti-

plane shear and plane strain. For these the region R occupied by the

undeformed body is taken to be cylindrical and a fixed cartesian

1 stands for the idem tensor.

S.
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coordinate frame is chosen so that the x3 -axis is parallel to thegen-

erators of R. Let j& be the cross-section of P in the plane x3 = 0.

To begin, we assume that the material occupying R is incompress-

ible. A deformation (1.1) on R is an anti-plane shear if it is of the

form

ya=xa , y 3 =x 3 +u(x1 ,x 2 ) (1.14)

As shown in detail in [10, the deformation (1.14) can in general only

be sustained by materials whose strain energy density W=W(II,I2) is

of suitably restricted form. Here we consider a class of materials

shown in [10] to be compatible with (1.14) for which W depends onlyon

II:

W--W(I ) , W'(I)>O for Ii 3  , (1.15)2

W(3)=0 ; (1.16)
*l

here W' is the derivative of W with respect to II. As indicated in

[4], substituting (1.14) into the constitutive law for incompressible

materials (1.12), (1.13) permits the reduction of the field equations to

[*'(I1 )u, = 0 on (1.17)3

IGreek subscripts take the range 1,2 while Latin subscripts assume the

values 1,2,3. Repeated subscripts are summed.
2Note that 1i- 3 in the undeformed state.
3Subscripts preceded by a comma indicate partial differentiation with
respect to the corresponding material cartesian coordinate.

IL
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with

2 2
1=3+ Ivul 2 , Ivul =u, u a (1.18)

The components of Cauchy stress are given by

T3 a= Ct3 =2 (l)U T -33 22W'(I 1 )Ivu2 (1.19)

An elementary solution of (1.17), corresponding to a state of sim-

ple shear with amount of shear y, is given by

u(xlX 2 )=Yx2  for all (xlx 2 )E . (1.20)

For this deformation

T2 3  T3 2 =T(y) 2 (3+y)y , T3 3 = T(y)y (y<) (1.21)

We refer to the graph of T(y) vs. y as the response curve in simple

shear for the material at hand. Because of the inequality (1.15), the

displacement equation of equilibrium (1.17) can be shown to be elliptic

at a solution u and at a point (x1,x2 ) if and only if

T(Y) >0 , y= Ivu(x l ,x2 )1 (1.22)1

Thus,the condition of ellipticity is satisfied if the slope of the re-

sponse curve in simple shear is positive at an amount of shear equal to

1See [11).
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the magnitude of the local displacement gradient vu(x l ,x2).

The incompressible material to be considered here was introduced in

[4); its response function T(y) in simple shear is given by

Uy for 0 :.y
T(-y) = (1.23)

Y1/2 for 1 ly<oo

where p is the shear modulus at infinitesimal deformations. The re-

sponse curve (1.23) is described in Fig.l. The elastic potential W(O1 )

associated with this material reduces to

7(Ii -3) (3-1 s; 4)

W(I) (1.24)

We observe for this material, the differential equation (1.17) is

elliptic at a solution u and at a point (xl,x 2 ) if Ivui<1; it is

hyperbolic if Ivul >1. In this paper we shall study weak solutions u

of (1.17) which are continuous and have piecewise continuous first and

second partial derivatives on k. Clearly, these continuity require-

ments allow for the possibility of finite jump discontinuities in vu

as well as in the stresses across curves in . Equilibrium requires

that, across such a curve C, the axial component of Piola traction

given by

s3  n = 2W'(II) L(1.25)

must be continuous. In (1.25) au/an is the normal derivative of u
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on C. We call such a curve an "equilibrium shock".

Let us now suppose the material occupying the cylindrical region

R to be compressible. A plane deformation of R parallel to the

(x1 ,x2 )-plane is described by

y=x +ux,)yCI x L+u C&(XlX 2 )  1( .6
(1 .26)1

Y3 x3

For a plane deformation, the fundamental scalar invariants are related

by 12=lI+13-1, so that the strain energy density W(ll,I 2 ,13 ) for

compressible materials can be written as

W(1 ,IS12,13)= (I,J) , (1.27)

where

I=11- 1 J = . (1.28)

Equations (1.26)-(0.28), in conjunction with (1.9)-(1.11) and (1.6),

provide the coordinate equations of equilibrium:

2 W ya+2 (aI,+ ,I J,a Y,

(1.29)2

]One may consult [12] for a detailed treatment of plane-strain deforma-
tions.

2c are the components of the two-dimensional altenator.



-10-

together with the in plane stress components

0 0

Tol = 2 9W y y , , a on b , (1.30)1
a~~*YpY 'P aj a

0 0

LW y + LW on b (1.31)°a8 czY,8 'J 8y cip p,y

Furthermore,

Y + Y2 + 2+Y2, on & (1.32)

The differential equations (1.29) may suffer a loss of ellipticity

at solutions that have sufficiently severe local deformations. The el-

lipticity conditions for the system (1.29) are discussed in [7] and due

to their complicated nature will not be reproduced here.

The special compressible material that concerns us has the elastic

potential

W(IJ) = (Ij-2 + 2J -4) (U >0) (133

where P is a constant. This strain energy density was proposed by

Blatz and Ko [8] to model a highly compressible rubber-like material.

The basic properties of the Blatz-Ko material are investigated in [9].

It is shown in [9] that, for the material characterized by (1.33), the

coordinate equations of equilibrium (1.29), are elliptic at a solution

ya and at a point (x1 ,x2 ) if and only if the invariants I and J,

found through (1.32), satisfy

16 is the two-dimensional Kronecker delta.



2J I <4J (1.34)

In view of the potential loss of ellipticity, it is natural to require

of the coordinates ya(xlx 2 ) only the relaxed smoothness specifiedfor

u on b. Thus, there may be curves C across which discontinuities in

the deformation gradients y ,' occur. Across such equilibrium shocks,

the Piola tractions

sa =o n8  , (1.35)

must be continuous to maintain equilibrium.

Finally, the homogeneous deformation corresponding to a state of

plane strain uniaxial stress parallel to the x2 -axis is of interest.

For the Blatz-Ko material (1.33), such a deformation is described by

Y = x1I 3x ' Y2 A=x2  x ,>0 for all (xiX 2)EB , (1.36)1

where the stretch X is a constant. The associated true and nominal

stresses are

T22=u(- "8/ ) , TI = T12  T 21 = 0 on b

(1.37)

2 (X-1/3 -3 a  l I1=a1 2 21=0 on

Suppose a solution to the governinq differential equations (1.29)

corresponds locally to a state of plane strain uniaxial stress with

principal stretch ratio A. If A lies on the interval (A o,xo),

1See [9].
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where

X0 (2 +VI) 3/4, (1.38)

the field equations will be locally elliptic (see Fig.2).

I
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2. ANTI-PLANE SHEAR DEFORMATIONS NEAR THE TIP OF A CRACK

In the present section we give the formulation and asymptotic solu-

tion of a nonlinear crack problem involving finite anti-plane shear de-

formations. This analysis is included to provide valuable insight into

the more challenging tension crack problem considered in the next section.

Let the open cross-section £ be the plane domain exterior to the

line-segment

£= [(x l x2 )I-a xl -a , x2 =O] , (2.1)

as depicted in Fig.3. Thus, the region R corresponds to the undeformed

configuration of an all-around infinite body with a plane, infinitely

long crack of width 2a.

The body is composed of the special incompressible material intro-

duced in Section 1 and characterized by the response curve in simple

shear (1.23). Suppose the body is subjected at infinity to a simple

shear parallel to the edges of the crack. An assumption, consistent with

the loading and the particular material, is that the deformation is en-

tirely one of anti-plane shear as given in (1.14). Referring to Eqs.

(1.17), (1.18) and (1.24) we obtain the governing differential equation

for the unknown out-of-plane displacement u:

v2u = 0 for Ivul<1 , (2.2a)

[(Ivul' 3/2u 1 =0 for IvuI>l . (2.2b)
,a 'a
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At infinity we stipulate

u=yx 2 +o(l) on & x x -o , (2.3)

where the positive constant y is the amount of shear. Further, we as-

sume that the crack boundary in the deformed body remains traction free.

According to (1.8), (1.25) and the inequality in (1.15), this require-

ment is equivalent to

u,2(x l O± ) = 0 (-a<x 1 <a) (2.4)

Note that the solution u to the boundary value problem (2.2)-(2.4)

is to obey the continuity requirements set down in Section 1. Also, for

the problem at hand we require that u be bounded within any circle of

finite radius centered at the crack-tips and the limits vu(xl,O±) are

to exist and be continuous for -a<xI <a.

The nonlinear crack problem formulated above is one of considerable

difficulty. Knowles and Sternberg [4] considered the so-called "small-

scale nonlinear crack problem" associated with the global problem de-

scribed above. In the small scale problem, y is assumed to be small

compared to unity and the finite crack is replaced by a sew4-infinite

one. One seeks a solution of (2.2) which satisfies (2.4) on the semi-

infinite crack and which, at infinity, "matches" the near-tip field pre-

dicted by the linearized theory for the original global problem associat-

ed with the finite crack. An exact solution to this small-scale prob-

lem was constructed in [4] by means of a hodoqraph transformation. Here,

we consider the global problem and use a direct asymptotic approach to

study the field near the crack-tip.

t Asa"
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Let (r,e) be local polar coordinates in the undeformed configura-

tion as shown in Fig.3. Then,

xl-a=-rcose , x 2=rsine (2.5)

The tip of the crack is denoted by r=O, while en and O=-r rep-

resent the upper and lower crack faces, respectively.

We first investigate the possibility of "smooth" solutions near the

crack-tip. Suppose the global solution to the crack problem admits the

asymptotic representation

u-rmv(e) as r-'O , (2.6)1

uniformly on -< <esw. In (2.6) m is a constant in the range

Ogm<l , (2.7)

and v is a "smooth" function on [-n,ir]. Here, we say a function is

smooth if it is at least twice continuously differentiable on its domain

of definition. In the present problem, symmetry implies

v(e) = -v(-e) ( -. e <7) (2.8)

The boundary condition (2.4) yields

= on e=-wn , (2.9)

where the dot denotes the differentiation with respect to e. The re-

strictions (2.7) on m guarantee that the displacement remains bounded

1The asymptotic equality symbol ",- is used in the following sense;
u -rmv(e) is equivalent to u-nrmv(e)+o(r m) as r-0.

I . . .. . . .
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near r= 0 for -7 se si, while permitting unbounded displacement gra-

dients.

Equations (2.6) and (1.18) imply

Ivui,.p(e)rm' l as r-O , (2.10)

where

p(e)= v2(e)+ 2 (e) , (2.11)

for -woe'. Clearly, if p(e)>O, then jvuj>l as r-O, -nse:&n,

so that (2.2b) applies. Assume this to be the case and substitute (2.6)

into (2.2b). Retaining only the dominant power of r provides the gov-

erning differential equation for v(e):

2pV-3P+m(3-m)pv=O , (2.12)

on

If m=O in (2.12), we obtain the solution v(e)=ce+b (b and c

are constants). Consideration of (2.8) and (2.9) requires v(e) ZO for

-rwe sit. We may thus restrict m to the interval (0,1).

The differential equation (2.12) can be analyzed in the phase plane.

Details of this analysis are given in [12]. One finds in this way that

the general solution of (2.12) may be written in the form

mv(e) = Vcos (e) W0 +cos 2*(e) 1" 1/20 -im) (2.13)

where *(e) is the general solution of

(l/3+cos2);+(w 0 + c s2*)=O , (2.14)

* - -- -III
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for -w <w. In (2.13), V is constant which we assume to be positive

and

wo= 1/3(3- 2m) (2.15)

Observe that for O<m<l, one has 1/3<w <1. In Eq.(2.13) we must

have wo +cos2* 0 to assure bounded displacements. Further, we note

that if p is calculated from (2.13), (2.11), it vanishes nowhere on

[- ,.], as was assumed.

In view of Eqs. (2.8), (2.13) and (2.14) we choose

*(0) = r/2 ,(2.16)

so that (2.9) holds if and only if

(T):=2 r , *(-n) = (2n +1)7r n 0=,±l,±2,... (2.17)

In Fig.4 we sketch the curve *= *(e) governed by (2.14), (2.16) and

(2.17) for the case n= O. It is apparent from the figure that there

are no continuous solutions of the boundary value problem for i -this

result is found to be independent of the choice of n. Consequently,

there does not exist a smooth function v on [-w,w] that satisfies

(2.12), (2.8) and (2.9).

We now wish to generalize the Ansatz (2.6) concerning the form of

u near r= 0 in such a way as to permit discontinuities in vu across

certain curves issuing from the crack-tips. Accordingly, we suppose

that there are two curves, e and 8", defined in a neighborhood of

the origin by

i!
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±e=9(r) , O<rr.ro  , (2.18)

where e(r) is a smooth positive function such that

o(r) -Ars as r-O , (2.19)

and A>0, eO are constants to be determined. If s=0 in (2.19),

then A is required to satisfy O<A<7r and the curves are tangent

to the rays 0=±A at the origin. When s >0, 8+  and 8- are both

tangent to the x1 -axis at the origin. Since our interest lies in re-

producing the results in [4], in which the shocks 8± are found to be

tangent to the x,-axis at r= O, we treat here only the case s>O in

(2.19). The case s 0 is discussed in Appendix A.

It is convenient to introduce the regions (, E+ and - (Fiq.5)

as follows

= (r,e)-E(r)<e<O(r) , O<r.r O 3

+= (r,)Ie(r)<e<w , O<r'ro3 (2.20)

=<r,)I- <e<-(r) , O<rsr 0 3

We first investigate solutions of the differential equation (2.2b) which,

in the region Y, have the asymptotic form (2.6), where v(e) i,; a

smooth odd function defined for -e0 ;ree o  for some e0, Oe<10'K.

The exponent m is now permitted to be neuative, but rmv(e) must re-

main bounded as (re) approaches the origin from within X.

If m<0, we find that (2.10), (2.11) still apply as r- 0 in X

and v(e) must again satisfy (2.12), which leads to the same implicit



-19-

representation given in (2.13)-(2.15) except that now m<O. Note that,

in this case, w0>1 and hence o +cos2W Q. As before, (2.16) ac-

counts for the parity condition (2.8). Integratinq (2.14), subject to

(2.16), yields *(e) implicitly through

f=-( -/2)+ 0-)itan-l[witan(*-7/2) ]  (-o <e<e0 ) , (2.21)1

where
1/2

(m< O) (2.22)

and

e -112 cos + m l tan- 0<7 (2.23)

At this point Eq.(2.21) cannot be inverted explicitly to furnish

=p(e). It does, however, indicate that *(a) is a continuously dif-

ferentiable function which increases monotonically on (-e ,0 ) from a

value 0 =l/2cos'1 (-1/3) to 7- o  and is antisymmetric about e=0,

=ir/2. In view of these facts, we confirm through (2.13), (2.21) the

existence of a smooth function v on (-e0, 0 ) which satisfies (2.12)

and has the appropriate symmetry. Thus,

u -rmv(e) (m<O) as r-O , (2.24)

represents an asymptotic solution to the hyperbolic differential equa-

tion (2.2b) on W(.

]Here, the inverse trigonometric functions take their principal values.
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For 1e<<l, Eqs. (2.13) and (2.21) provide

V=p 0[e+m,(3-4 4m)e 3 + O(e 5)) as e -0 , (2.25)

where

Po = p(O) (2.26)

From (2.18), (2.19), (2.24) and (2.25) we observe that the displacement

remains bounded as the crack-tip is approached from within W if

8+mzO.

We now seek a solution to (2.2) valid on the region E+. Assume

the displacement on &+ admits the general form (2.6) where the expo-

nent mkO takes on the smallest possible value - boundedness of the

displacement as the origin is approached in E+ necessitates m be

nonnegative. We find that

u -b+rv(e) as r-0 on E , (2.27)

where b is a positive constant and now v is a smooth function on

(O,w] that obeys the boundary condition v(r)= O. Note that the con-

stant b is the solution corresponding to m= 0 and reca , for

0<m l in (2.6), there are no smooth solutions of (2.2) on (0,w] sat-

isfying the boundary condition on e=i.

Substituting (2.27) into either (2.2a) or (2.2b) leads to the same

differential equation:

v+v=0 (0<e<W) (2.28)



-21-

The most general solution of (2.28) for which the boundary condition

v(e)=0 is satisfied is

v(G)=ccose , 0<es , (2.29)

where c is a constant. In &-, the dominant term analogous to (2.29)

is obtained by symmetry.

It is convenient at this point to present the results of a higher

order analysis. If Icl <1 we find

u -b+crcos6+dr kcosk(e-7) (k>l) as r-0 on + (2.30)

Note that Ivul -Jcl<1 as r-O which assures the ellipticity of the

displacement equations of equilibirum 
on E +

What remains now is to construct an asymptotic solution to the crack

problem near the crack-tip - continuous, piecewise smooth and with con-

tinuous nominal tractions across e. To this end, we confine our atten-

tion to Ore~ r and note that (2.8) generates the solution in the lower

half-plane.

The requirement that u be continuous across S, together with

(2.18), (2.19), (2.24), (2.25) and (2.30), clearly implies

b -APors+m, (2.31)

so that necessarily

A= p 1 b ,, -m (2.32)
0

We now address the continuity of the non-zero nominal traction s 3
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(1.25) across the shock 9+. The asymptotic forms of the traction (1.25)

on the two sides of e are evaluated through (1.18), (1.24) where the

displacement on the hyperbolic side of the shock is given by (2.24),

(2.25) while, on the elliptic side, we use (2.30). The tractions are

found to be continuous across e if and only if

1/2 l/2(m-lk (2.33)P0  r - (m-l)bcr-l+dPoksinkrk (233

The possible relationships between the exponents k and m that

permit an asymptotic balance in Eq.(2.33) are described in Fig.6. Asymp-

totic solutions to the next order of the displacement equation of equi-

librium (2.2a), (2.2b) were found on E+ and A( in an attempt toelim-

inate some of the cases I-V in the figure. However, the solutions had

sufficient flexibility so as to allow the necessary higher order match-

ing across an appropriately chosen shock S for all the five cases.

Our purpose, in this paper, is to reproduce the solution in [4] in the

vicinity of the crack-tip and hence we assume case II to hold, so that

m=-1 , k=2 . (2.34)

Equations (2.33), (2.34) reveal that

1ol/2
-I< <1 (2.35)

We note that for m=-l, (2.21) can be inverted analytically and on sub-

stitution into (2.13) furnishes, after some algebra

b .. .. : 
-

. . . . . ,
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v()--2-5 1 2 p (3os+Pj9 3 12
(cose+P(e)) /2 sine (- 0 <e o  , (2.36)

where

P(e)= (9cos 2 o-8) 1 1 2  (-e 0 <e oe0 ) (3.37)

and eo = cos " (2V2/3). This completes the matching to leading order.

To conclude, we summarize the asymptotic representation for the

solution to the crack problem (2.2)-(2.4) in the vicinity of the right

crack-tip. Equations (2.24), (2.30) together with (2.34), (2.35) give

1/2

u -b- b- rcose+dr2 cos2e as r-O on & 9
(2.38)

u'-r 1 v(e) as r--0 on ,(3

where b>O, O<po<vS and d are unknown constants and v(e) is given in

(2.36). In (2.38), &+ is the elliptic region and A( the hyperbolic

region described in (2.20). The displacements on E" are obtained

through symmetry. Equations (2.18), (2.19) and (2.32) indicate the elas-

tostatic shocks and 9- have the following asymptotic form

+ b r
e: e-±--r as r-O . (2.39)

p0

The above results are consistent with those found in [4] on taking

the limit r-0. However, in the local analysis presented here, the

constants b, d and po in (2.38) remain undetermined. In contrast,

the specific small-scale nonlinear crack problem treated in [4) leads
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to fully determined values of b, d and p0  Furthermore, for each suc-

cessively higher order calculation we obtain one additional unknown con-

stant. The reader may refer to [4] to obtain representations for the

stresses near the crack-tip.
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3. PLANE STRAIN DEFORMATIONS NEAR THE TIP OF A CRACK

In this section we present the formulation and first order asymp-

totic analysis of the nonlinear plane strain crack problem which consti-

tutes the main purpose of this study.

Let R be the undeformed configuration of a cylindrical body whose

cross-section & in the (xlx 2 )-plane is described in Fig.3. The line

segment £ (2.1) is the boundary of & and represents a crack of width

2a. The material making up the body is compressible and has the Blatz-Ko

plane strain elastic potential (1.33).

Suppose the body is subjected to uniform uniaxial tension at infin-

ity perpendicular to the crack faces, so that the actual stresses satis-

fy

Ta$(XlX 2 ) = 622 2T+o(l) as x x -oo , (3.1)

where r >0 is the magnitude of the applied load. The crack faces are

to remain traction free. Applying (1.7) and (1.8) results in thebound-

ary conditions

a, 2 (xl,O±)=O (-a < x 1<a) . (3.2)

As a consequence of (3.1) and (3.2) the deformation conforms to (1.26),

corresponding to plane strain parallel to the (xl,x 2 )-plane. Accordingly,

the relevant coordinates ya must satisfy the equations of equilibrium

(l.29),together with (1.32) and (1.33). The conditions at infinity(3.1)

and boundary condition (3.2) are represented in terms of the coordinates
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through (1.30)-(1.32). The solution y to the boundary value problem

must be continuous and piecewise smooth on & as indicated in Section 1.

We insist also, that the solution be bounded in the vicinity of the

crack-tip and the limits y ,. (xlO±) exist and are continuous for

-a <x, <a.

An analytical solution to the global problem is not attempted here.

We consider instead, the asymptotic character of the solution in the

neighborhood of the crack-tip.
1

Let (r,e) be the polar coordinates introduced in (2.5) and

y =ya (r,e) be the local deformation near the right crack-tip. From
0

(1.29), with W given by (1.33), we obtain the appropriate form for the

governing differential equations, namely

jv2y 2(J rY ,r +r , y ,

+ (-)OrI 1J3 (R yr-RrY 0,)=O (a 0) (3.3)

for r>O, - e< w. In (3.3),

-3R(r,e) =1 - I "  (3.4)

where (1.32) gives

(3.6)
J(r,e)= r - l1(y l , r y 2 , e - y l , ey 2 , r ) > 0  (3.5)

--Y.,r= 2 +Y2,r + r '2 (y2, + Y2, )  (3.6)

1The existence of a solution is assumed.

3*mm m m , .... *,*
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for r>O, -ie . The loading at infinity (3.1) indicates the fol-

lowing coordinate symmetries:

yl(r,e)=yl(r,-e) , Y2 (r,e)=-y 2 (r,-e) (r>O, -Tr-e.e ) . (3.7)

Substituting (1.31), (1.33) into (3.2) provides the boundary conditions

on the crack faces

1Y~- 2,r =

.on e=-7r,w for r>O (3.8)
Yl ryle o +y 2 , r y2 , e =  0

To complete the formulation we stipulate that the resulting deformations

have the same smoothness as that specified for the global problem.

Now turn to the asymptotic solution of the crack problem. We fol-

low the anti-plane shear example in the previous section and assume that

the local deformation field is represented by

m
y- r av (e) as r- O (no sum on c) (3.9)

where ma are constants. In Apoendix B we consider Osmin[m,m 2 < I1

in an attempt to find a solution, consistent with (3.3)-(3.8), in which

v are smooth functions on [-rw]. We conclude from the analysis that

no such deformations exist. Motivated by the anti-plane shear problem,

we now let 9+  and S_ be the curves originating at r= 0 described

in (2.18), (2.19). Also, define the regions Y, E+ and ', in the

neighborhood of the crack-tip through (2.20) (see Fig.5).

Suppose (3.9) holds on ; with
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m 2 m<O , m<m1  (3.10)1

and v are smooth functions on (-eo,e0 ) (O<e0 <W). We assume here,

that the deformations are "most severe" in the x2-direction. We let

JrVq(e) as r-O on ( , (3.11)

where q is a continuously differentiable function for -e0 < e<e o and

(3.5), (3.9) and (3.10) infer the constant v >2(m-l). Further, (3.6),

(3.9) and (3.10) provide the asymptotic form of the scalar invariant I,

namely

I-r2(ml)p2 (e) as r-O on V , (3.12)

where

pt)=in 2  i
p(e)=/m 2 (+ (e) on (-eo,eo ) . (3.13)

Proceeding as in the case (B.23) in Appendix B we find that (B.25)-

(B.27) hold on (-Boeo) for m<0. Equations (B.29)-(B.32) provide

expressions for v2 and q on (-eo,eo) while the symmetry (3.7) and

smoothness across the ray e= 0 is guaranteed by (B.34). In (B.34) we

choose £I = 0 and hence (B.29)-(B.32) reduce to
2

mv2 (e)=V 2cos *(e)jc o +cos2*(e)l/
2(m 'l) , (3.14)

-The case ml =m 2 <0 is treated in a manner similar to that of the case
of positive equal exponents discussed in Appendix B. We find that the
coordinates (3.9) and the parity condition (3.7) are incompatible.

2The case el 1 is not treated here. We find this leads to inconsis-
tent result J(r,O)=0 for all sufficiently small r>0.

_ _ _ _ _ _ _ _ _ _ - ~ -. . . ... . . . . . . .. ". ) 'II = - , , , . . _ . . . .. .. . . .



-29-

q(e) =QI + cos 2(e)I1/ 3 (m 1) (3.15)

for -Oo<0< where V2 and Q are positive constants and (e)

satisfies

(1/2 + cos 2,) + (c o + cos 2) = 0 , 4(0) = w/2 (3.16)

Furthermore,

CO = 1-m/2 , v2/3(m-1) . (3.17)

Integrating (3.16) yields

o=- 7r-/2)+ (1- M)tan'-[1 tan (0- 7/2)] (-eo < 6<e , (3.18)

where

1/2

m - 41-1/2 (m<0) (3.19)

and

80 -/6 + F - M) 4tan'l (E4tan r/6) O< eo < r (3.20)

The expressions (3.18)-(3.20) indicate that *(e) is a smooth function

on (-e0,eo) and hence v2 (e) (3.14), q(e) (3.15) are also smooth

with the correct parity for -0<e<0'

We now evaluate the yl-coordinate to leading order. Note that

(3.13), (3.14) and (3.15) imply

q(e)=QOP2/3(e)>0 on (-eo,eo0 ) , (3.21)
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with Qo= QV2
2/3. The Jacobian is evaluated using (3.5), (3.9), (3.10)

and again through (3.11), (3.21). Equating the two results provides the

asymptotic equality

m+m l'2 Qor2/3(m-l) p2/3 as r-0 (3.22)r (mlVlv 2 -mv}lv 2)Qrp

on V. Assume first, m1 <1/3(4-m) and find v1(e)=VlY v2 (e)1
1

on (-e0 ,60) where VY(>0) is a constant. The restrictions (3.10)

imply that m1 = 0 and vl(e)= V, is the only smooth solution across

e=0. Taking yl(0,e)=O (-1re=7) requires Vl =0.1 Now let

ml =1/3(4-m) , (3.23)

and obtain a nonhomogeneous first order differential equation for v

from (3.22). We establish that the homogeneous solution is unboundedon

e= 0 and is neglected, while the smooth particular solution gives

Q e-1rje2 3 -_E
I5-1'v2(6 5 p2/3(Co~v25(y)dyo on (-eo,eo) , (3.24)

where

2 2+m < for m< 0 (3.25)

Equations (3.9), (3.10), (3.14), (3.17), (3.23)-(3.25) provide an

asymptotic solution to the differential equation (3.3)-(3.6) such that

IThe deformation is normalized so that the crack-tip does not move with
respect to the xl-axis.



-31-

Yl :h1 .rl/ 3(4 m)v1 Ce)}T (m<O) as r-O on V (3.26)

Y2 h2 rmv2(e)

Further, (3.11), (3.17) and (3.21) give

J ~Q0r2/3(m-1)p 2/3 (e) as r- 0 on A( (3.27)

while substituting (3.26) and (3.27) into (3.3) (a=l) reveals

R= -Q3 +O(r8/3 ( -m )) as r-O )n V (3.28)

It is apparent from (3.12) and (3.27) that I>>J on A and thus the

coordinate equations of equilibrium are hyperbolic at the solution (3.26)

on,'.

For IeI<<l, (3.14)-(3.16) and (3.24) provide

3Q p-1 /3 [l-4m(4-m) 2 +O(e 4 )
(4-rn)D gm4me+ 0

1 3v2 =Po[e--m(5m-4)e +O(05)1 as e-0 (3.29)

2/3[l 4 m(m-I)2 +0(04)]

where

Po =p(O) (3.30)

Equations (2.18), (2.19), (3.26) and (3.29) infer that the Y2-coordinate

remains bounded on A in the limit r-0 if 8 +ma0.
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We now seek solutions to the governing equations (3.3) on + Sup-

pose

+a ~b (+)rva as r-0 on (3.31)

where b are constants and v are now smooth functions on (O,w]. As

in the anti-plane shear problem we obtain the representation (3.31)after

first assuming (3.9) holds on E with O-min[mlm 2]<l and draw on

results from Appendix B. The constants b are the solutions (B.5)

for m1 =m2 =0. The case ml =m2 =m (O<m< l) yields vl(6)=cv2 (e)

on (0,w], where c is a constant. If c=0 we recover the unequal

exponent case. The boundary conditions on e=w are given in (B.28).

After a tedious analysis we prove that no smooth solution v2  exists

on (0,7r] that is compatiblewith (B.28)and can be matched to the hyper-

bolic solution on V across

Substituting (3.31) into (3.3)-(3.6) and retaining the leadingorder

terms gives

2 2E(v1 + 2v 2 )2 + V1v 2 l ](V l +v I)

-1v2 +2.-[(v 2 +2v 1  1 +vlV2 2 (V2 + v2) 0
(3.32)

2 2
[3(v1 +v )v2 + (vlv l + v2 2 )v 2 ]( 1 +v l )

-[3(v I+ v 2)vI1 + (Vl1 I + v2Y2)l](N + v2 ) =0

for 0<e<f. The differential equations (3.32) are equivalent to

V +v =0 on (O,r) , (3.33)
.a
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unless the determinant of the coefficients of (V C+v a ) vanishes on

(Oi). Assume (3.33) holds and thus

V, (e) = X Cos e - X2 2 2/3sin 31 22 sine
(3.34)

v2(8) = X2Cos 0 + X, (X 2 +X 2)2/3 sin e

for O<e-.7i, where x are constants. The solution (3.34) obeys the

boundary conditions (3.8).

Observe from (3.26), (3.29), (3.31), (3.34) and (2.18) that

h~3Qop1 / 3 ( 4 - m ) -I r 113 ( 4 - m ) , el~bl + Xl r as r-O on e+ . As

1/3(4-m)>1 for m<O we arrive at

bI= 0 , xI=O , (3.35)

as a prerequisite for continuous coordinates across e. Letting the

scalar invariants take on their leading order values calculated through

(3.5), (3.6), (3.31), (3.34) and (3.35),the ellipticity condition (1.32)

reduces to (2--) 3/ 4 < IX2I < (2+/j) /4+ Physically, in the vicinity

of the crack face, we expect the leading order homogeneous deformation -

(3.31), (3.34) and (3.35) to represent a state of uniaxial tension par-

allel to the Y2-direction. This limits the range of the stretch ratio

further, so that elliptic solutions of interest obey

I<X<(2+/T)3/4 , X=-X2>0 (3.36)

11t can be shown that functions v. that produce a vanishing determi-
nant are not consistent with either the boundary conditions on the
crack face or the matching across 9+ .

2 kflJ~, A-k
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In what follows we require the solution on + to higher order.

Noting (3.31) and (3.34)-(3.36),we now assume

+ -1'/3r rkf

y =  r sin e + rf(e)

as r-O on + , (3.37)
+k

Y2 -e 2 -b 2 - xrcose+rkf ( e

where k>l is constant and f are smooth functions on (0,w].

Equation (3.37) satisfies the differential equations (3.3) to the appro-

priate order if

L (flof2;kvx)= on (O,ir) , (3.38)

where L is the differential operator,

L1 (fl 1 f 2 ;k x ) = (2 + K+ Kcos 2)f I + 2K(k- l)sin 26f 1

+ k[k(2 + K) - K(k - 2)cos 2e]f 1

+ N[sin 20f 2 -2(k -l)cos 2ef 2 - k(k- 2)sin 2of2  (3.39)

L2 (fl,f 2 ;k,) = (2 +M- Mcos 2@)f 2 -2M(k- l)sin 2f 2

+ k[k(2 + M) + M(k - 2)cos 2e]f 2

+ N[sin 2fi -2(k -l)cos 2ef I -k(k- 2)sin 28f] (3.40)

In (3.39) and (3.40)

K=3x8/3 -_I , M=3 "8/3 - 1 N=x 4/3 +x'4/ 3 (3.41)
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The boundary conditions (3.8) infer

3fi (7) - A-!4/3kf2(7r) :0 , '2(n) -4!/3kf 1) 0 (3.42)

Furthermore, (3.7) implies

=2el = el (r,- e) ,Y2 = e2 = -e+2 (r ,- e)  on - (3.43)

We now generate the first order asymptotic solution with the appro-

priate smoothness to the small scale nonlinear crack problem (3.3)-(3.8).

Consider O eso1 and refer to (3.43) to provide the deformation in the

lower half-plane. Accordingly, the matching conditions are

+ 8+

ec =h on 9 , (3.44)

together with continuous Piola tractions across e. We compute the

general expression for the nominal tractions through (1.7), (1.31) and

(1.33):

s/=J2(ya,r nr +r-ly,en )+( -)aR(ya ,rn.- r 'ly B n r ) . (3.45)

(n r,n ) are the components of the normal vector n in polarcoordinates.

Let a=2 in (3.44) and use (2.18), (2.1g1, (3.26), (3.29) and

(3.37) to find

b2 -AP0rS+m as r-O (3.46)

Take b2 > 0 , then

b2 =Apo , e= -m . (3.47)
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Similarly, let =l in (3.44) and use (3.47) to obtain

0 -1/3r/3(m-l) as r-0 (3.48)-I/ 3Ar-m +f1(o)rk-I p. sr0.(.8

Here and in what follows we assume that the functions f are analytic

on [0,n] and hence can be represented by a Taylor series about e= 0.

Before matching tractions on g we modify the result (3.28) so

that

Qo=1 and R=O(r8/3(1-m)) as r-O on (3.49)

We confirm (3.49) by first assuming the existence of an equilibrium so-

lution in the neighborhood of the crack-tip that has the general form

(3.26) and (3.37) with the curve e given by (2.18) and (3.47). Force

equilibrium in the x1-direction on a circular region in & centered at

r=0 necessitates that (3.49) holds on takinq the limit r-0.1

Equating the tractions (3.45) across 9+ and drawing on (3.47)and

(3.49) yields

3f(0) - x'4/3kf2(O) 0

X 1 3 (m- l)(X 8 /3- l)Ar -m (3.50)

+-'4/3(f(0)- X 4 / 3kf (O))rk-l _ 1/3 r-l/m-l) as
2 1 s~0  ra

The relationships between the exponents k and m that could provide

IThe result (3.49) assures no concentrated forces act at the crack-tip.
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a solution to (3.48) and (3.50) are presented in Fiq.7. We note the

similarity between this figure and the diagram obtained for the anti-

plane shear problem (see Fig.6). Again, we choose k and m throuqh

a distinguished limit and thus

m=-1/2 , k=3/2 (3.51)

In view of (3.51), the equations (3.48) and (3.50) give

A=I/3 ( 2 pol/3-fl(O)) ,(3.52)

1 ()- 4/3f2O: 3 X2O->4/3flO=-4/3p- 1/3 (3.53)
5l(0) - 7 A-3 f 2 (0) = 0 1 f2 (0) T -x 3f, (0) = A4 3 1 3 PO 3.3

Recall in (2.18), (2.19) that A is a positive constant and hence

fl (0) <2po1/ 3  (3.54)

Equations (3.38)-(3.42), (3.51) and (3.53) constitute a boundary

value problem for f on [O,w]. For convenience setcx

po 3 f (e) (Q06<w) , (3.55)

where f satisfies

L (fl f2;3/2,x) 0 on (0,7r) (3.56)

with
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1 21

A closed form solution to the differential equation (3.56) appears to be

difficult to construct. However, a numerical analysis indicates that

for values of A obeying the inequality (3.36) the nondimensional bound-

ary value problem (3.56), (3.57) does possess analytic solutions. For

X* , where

X 2.519 , (3.58)

the solutions depend uniquely on X. We find that X= X* is an eigen-

value associated with the homogeneous version of (3.56), (3.57). Only

one eigenfunction exists together with the particular solution. We note

that in all the solutions, f1 (0)<2/3, complying with (3.54).

We now present a summary of the asymptotic solution to the crack

problem considered here. Applying the results (3.47), (3.51) and (3.53)

to (3.26), (3.37) and (3.43) gives

+ -l/3r  1/3r3/2eI  rsin+p r 2T(e)

+ _1/3 2/32-
+- P p/(232_P(O)) as r-O on C , (3.59)

-1/3 3/2-
- rcos e + pol/' r f 2(e)

IAnalytic solutions to (3.38)-(3.42) and (3.53) were found for integer
values of k with X arbitrary and for arbitrary values of k with
X= . These solutions were used to check the numerical procedure.
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as r-O on (3.60)

h -1/2 J2(0h2 -r'I/v 2(e)J

l =+l (r,-) e e-+2(r,- e) on - (3.61)

where p0  is a positive constant and x a constant satisfying (3.36).

In (3.59), T (e) is a smooth function governed by (3.56), (3.57). For

a

m=-1/2 the implicit equation for ip(e) (3.18) can be inverted analyti-

cally as in the anti-plane shear problem. This result and (3.14) even-

tually yields

21/2 (2cose+P(e)) sine (-.<e< ) , (3.62)
v2(e)= Po (cose+P(e))i 6 "6

where

P(e)= (4cos2e - 3)1/2  (-,<e< .) (3.63)

Further, (3.13), (3.24), (3.25) and (3.62) provide

12 2p 1/3 (cose+P(e))22co1P(e e< ) (3.64)

Alternative representations for v are obtained from (3.29), (3.49)

and (3.51) in the neighborhood of e= 0:
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v 2 p-1/3[+ 3 a2 +004

V2=e-l 
3 +e +  ) ]  as e -- 0 (3.65)

v2  Po[ 6e - 3 e 3 +0(0 5)

Finally, in (3.59)-(3.61), + and E- are elliptic regions and A(

the hyperbolic region given in (2.20). The domains are separated by the

elastostatic shocks 9+  and S. Referring to (2.18), (2.19), (3.47),

(3.51) and (3.52) we find

±eAe(r) 1 e(r)2- (
(r -) C-T(0))rl/ 2  as r-0 (3.66)

0
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4. HIGHER ORDER CONSIDERATIONS AND RESULTS

What remains to complete the first order analysis is the evaluation

of the constant X and hence the functions '(e) on [0,v]. In this

section we calculate these unknowns numerically through higher order

considerations and the subsequent results are presented.

To begin, we replace (3.66) by the two term asymptotic representa-

tion

+ X 1/3 212

Se=±e(r) , 0(r) (PO) (y-T1(0)rl/2+Brt as r-O , (4.1)

where B and t>1/2 are undetermined constants. The domains 3V, &+
and E- remain as defined by (2.20). Similarly, (3.60) is modified,

such that

h Ir 3 /2v l ( e ) + rn lwl(e)

as r-O on V (4.2)

2 2(we) j
h2 r 1r'I 2v2(e) + rn~2e

In (4.2) ni>3/2 and n2 >-1/2 are constants while wl(e) and w2(0)

are smooth functions on (-,/6,w/6). Equations (3.27), (3.49) and (3.51)

provide the Jacobian to leadina order. Now assume

J -r'1p2/3(e) + r ql(e) as r-O on ' (4.3)

The constant vi is assumed to be greater than -1 and ql(e) has the
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same smoothness as p(e) on (-ir/6,rr/6); see (3.13).

Observe that (3.49) and (3.51) imply

R -r 4u(6) as r- 0 on W (4.4)

with u(6) a continuously differentiable function for -iff/6< e< r/6.

An alternative asymptotic representation for R is generated from the defini-

tion (3.4)-(3.6), together with (4.2) and (4.3). On equating this ex-

pression to (4.4) we arrive at

v'1 +1 -2/3 n 2+112 2 1 n r4uasr- (45
3r p q,- 2r P_ ( 2 2 -~2 2 w2)-rua r0 (45

on W'. Suppose

then (4.5) and (4.6) give

3p 4/3q, -2( 2  -~n vw) on (-7r- .f (4.7)

The governing differential equation (3.3) with az=2, with the coordinates

replaced by (4.2) and the Jacobian by (4.3), (4.6), implies that w 2, q,

also satisfy

2/3 4 -1/3-2/
p Q2 -p_ PW2 +n2(n2 +2)pW 2 -24 1

+[V (n 1(4.8)

for -',/6<e'<,/6.

It is convenient at this point to assume that suitably smooth solutions
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exist to (4.7) and (4.8) on (-v/6,-/6). For small lel, we find by

making use of (3.29), (3.51) and (3.65) in (4.7) and (4.8), that

3

qw2Pl/+(e ) J as e-0 (4.9)
ql = 2 pol/3p +0(02)

where p1  is a positive constant of integration.

Next, we consider the Jacobian to higher order. Through (3.5),

(4.2), (4.3) and (4.6) we find

r (1v2 1  +nlG 2Wl)'r (q1 - 3 v w2 +n2 vlw 2 ) as r-0 , (4.10)

on W. Take nI to have its smallest possible value

n, =n2 +2 , (4.11)

whence

v2 l +2(n2+2) 2wl =2ql-3vl 2 +2n2 1 w2 on (-.,-) (4.12)

Again we assume the existence of a smooth solution,while for small lel

equations (4.9) and (4.12) give

P-4/3pl

w 3(n2 +2) +0(e) as e --0 (4.13)

Now turn to the solutions of the differential equations (3.3) on

INote, if n<n2+2, w1  is unbounded on e=O.

U -
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the elliptic domain F+. We replace (3.59) by

1 1 3 2
+ -T - - 2
el~ rsine+p0  r i 1 (e)+p r

12 13

e2 ~X pPOp(--T(0))- xrcose+po3r f 2 (e) as r-O on , (4.14)

2

+ p - Ir 2 (e)0 o r92(o

where gM(e) are analytic functions on [O,yr]. In (3.3) we assume the

coordinates conform to the representation (4.14) and obtain the follow-

ing differential equations for g

L (g 1 ,g 2 ;2,A)=H (Tl,f 2 ;x) for 0<e<i , (4.15)

where the differential operators L are defined in (3.39) and (3.40).

Furthermore,

2 5
H, l ,T2 ;; = 4x [(Jl )+ 3Jlf l ] - 6X- :(sin e Jl + 2cos eJ )J l

(4.16)

+X '[3RIT 2 -RlT 2 +2sine(2A 3J 2 - AR2 ) + 2cos (2x" 3J 2 - R2) ,

2 1
H2 (f l ,? 2 ;) = 4X" 3[ (jl2'+ 3J2] - 6x 3 (2sin 63,- cos eJl )J1

4 1 1 (4.17)

32cos e(2 2sin e(2-l -RA [Rll RT,+ co e2xJ2- x R2) J2sl e(2 x2 R2 ;)
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on (O,w) with

4 4
3- i 3 3

Jl= X[sin O(fl+ x f2)++os6(fl-*)f 2)]

(4.18)
3I -

4

R+ [sin e[ (2 + K)T +(2 + M)f2]

4

8 8+ Cos 6[x (2cos~e) 2+ (2+Mf3 (4.19)

8 8+(2 + K+ 3 3C 2e)fos( 3 + W(2 + M- 3 3cos 2e)c2

8 _83~ 3
2 )sn- 3N[o s 2 e)-1 2 )o

- (*li 2 -9 T2 )sin 2e]) .(4.20)

In (4.18)-(4.20) the constants K, M and N are supplied by (3.41).

The boundary conditions on the crack face e= 7t (3.8) suggest

4 7
-1- 3- -2 -2

4 7 (4.21)

q 2 (7) - (7)-3A T, (7) 2(7r
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Associated with (4.15) is the homogeneous solution

*G,1 [K+ (2 + K)cos 20] + G2Msin 2-G 3 Ncos 2e

(4.22)

2 = G49 M (2 + M)cos 2e] + G2 Ncos 2e +G3 Ksin 2e

on [O,w], where Gl -G4  are arbitrary constants. The formulation of

the boundary value problem for g on [O,w] is completed once bound-

ary conditions on e= 0 have been established.

We proceed now with matching the higher order solutions on 9V and

+across the elastostatic shock e. Recall that the smoothness of the

complete solution to the problem (3.3)-(3.8) requires continuous coordi-

nates and Piola tractions across 8+.

Equating the coordinates on 8+  usinq (3.44), (4.1), (4.2), (4.9),

(4.11), (4.13) and (4.14) leads to

t1 +

tY + (_ T 2 n2T
-xr~p 0oBr (PO ("i 1 0)p r

X Brt+l as r-O (4.23)

2 -pp n+2+ Po [x (y" f, (0))fl (0) + g, (O)]r2~P - p r n 2

In (4.23) we let

n2 =0 , t=1 , (4.24)

referring to (3.57) suggests
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B=\p4)3 1l(0))Pl

2 
( (4.25 ) 1

Pi 11 0 Ix(5f()'2g()( T,(0))

(4.24), (4.25) and continuity of the tractions (3.45) across reveals,

after considerable algebra, that

4 7 8 1

92 3 2

7 4 4
(0 1(o), ( - 1 (o))2(o) -- 2xT(- f(O))N (O) (4.26)

1 8 8 8

AY[-F A -6r(9 +25A )TI () +(3+2A 3Ffl(O)JT2(O) J
What remains is to solve the boundary value problem (4.15)-(4.21)

and (4.26). Recalling (4.21), (4.22) and (4.26) we note that the homo-

geneous system has the nontrivial solution

4

1 (e) = 2A M1 lsin2e ,

4 4 4 .2
-(e) = [M( 3 N - 3M) + [2x 3N+ (2 +M)(3M-x 

3 N)]cos 2eA , (.

1For x obeying (3.36), 1/2- 1I(O)#0. i
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where is an arbitrary constant. Consequently, in order for a solu-

tion to the nonhomogeneous problem to exist the eigenfunction (4.27)

must be orthogonal to the right hand sides in (4.15).

The particular solution to (4.15) is found in terms of X and f

through the method of variation of parameters. This expression, with

(4.22), facilitates a numerical investigation into the existence of a so-

lution to the boundary value problem. We find functions e(e), satisfy-

ing the nonhomogeneous differential equations (4.15)-(4.20) and the

boundary conditions (4.21), (4.26), if

3

A=A 2.657< (2+.3)4  ( 2.685) (4.28)2

This result, together with the eigenfunction (4.27), provides the com-

plete solution:

%(e)= (e)+ (6) on [0,ir] (4.29)

The numerical solutions obtained for T and J with X= A are shown
a a

Fig.8. Some pertinent results from the figure are

f1(O) " ' .06 2(0)-°, l(70)0° .1.0900g5, (4.30)

1Recall that the functions f. on [O,w] depend uniquely on A for
A X* given in (3.58). If A-A *, T comprises of an eigenfunction
and a particular solution.

2The result (4.28) is confirmed by an independent numerical computation
in which (4.15)-(4.20) subject to (4.21), (4.26) were treated directly
using a standard differential equation solving routine.

- .
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The differential equations (4.7) and (4.8), in which the exponents

n2 and t are given by (4.24), yield

2 e 7~)d
w2 (e)=p, Po f e dx (-r<e<) (4.31)

2 ~0 6

where

1 .2 2

The function v2 (e) (3.62) satisfies

>0 for -i<o<L

1 2 ( ) 1 v2( )(4 33)
=0 fo r 6 = + IT

and thus w2  is a smooth function on (- r/6,7r/6). Furthermore, (4.12)

and (4.24) provides

Wl~)=;4 1)81 4
3ie=v () v3() ( pG 1 - v(yp) (yp) dy (4.34)

which also has the appropriate continuity on (-?r/6,r/6). The constant

pl is evaluated through (4.25), (4.28) and (4.30) to reveal

Pl -"-.035 ,(4.35)



-50-

which, in conjunction with (4.9), (4.13) and (4.24), gives

wl = WI p3+O( ), W1= , 0 06

2 as e -.0 (4.36)= 0F
w2 = W2P +O( 3), W2-- .035

Summary of the final results

From Eqs. (4.2), (4.11), (4.14), (4.24) and (4.28) we observe that

the second order asymptotic solution to the local crack problem (3.3)-

(3.8) is as follows:

3
Y1.~d IFsine+r f1(e)+r g1(e)

3 as - 0 on + (4.37)

~C +dcose-2- -2-e
~2 c24d2F ~ f 2(e) + 92(e

3

1 as r-O on JV (4.38)

Y2 ,r v2(e)+ W2(e)

where

2 2

ya= PO YO ,r = PO r (4.39)

and the coordinates on " are obtained through symmetry. The constants

c2 , d are found to be
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c2  1.013, d 1 .722, d2  -2.657 (4.40)

Recall that g (e)=g(e)+V() on [O,i] in (4.37). An analytical
a a a

expression for 4(e) is given in (4.27) while --(e), together with

T(e), are described in Fig.8. In (4.38)
a

1 l1
-v ) 3 V(e) 2 (e) p 1ve)1I 0e v2 0o '2

2 2 (4.41)

W(e)- p 3W(O), w2 (e)= p 3 w2 (e)

where v1(6) and v2(e) are found in (3.62) and (3.64), respectively.

We refer to Eqs. (4.31)-(4.36) to obtain expressions for w a(e). In ad-

dition, we note that the domains E+ and V (2.20) have the elastostatic

shock 8 (2.18), (2.19) as a common boundary. In view of (4.1), (4.24),

(4.25), (4.28), (4.35) and (4.39) the asymptotic representation of the

shock reduces to

I
Se-c 2 r 2 +c3r as r-0 (4.42)

The constant c2  is given in (4.40) and

c3  .036 (4.43)

In the analysis summarized above the remaining unknown constants are

PO (>0) and l in i. (see (4.27), (4.29)).

The results (4.37)-(4.43) represent a locally one-to-one map of the

neighborhood of the crack-tip. Calculating the deformation image of the crack
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face e = 6 in terms of the nondimensionalized spatial coordinates leads to

Y2 C2 +c 4y (c 2 =1.013, c4 =8.24) as y,-0 +  (4.44)

The crack-tip (r=0) deforms onto the line -c2 'Y 2 'c 2, Yl =0 and the

shock a+  (4.42) maps onto + which is found to satisfy

2
-~c 2 -c3Y (c5-3.48) as -O +  

(4.45)
2(

The curves (4.44), (4.45) are sketched in Figure 9 where A( and

c correspond to the respective images of V and E+. It is apparent

from the figure that, in the vicinity of r=O, the traction free faces

(e= ±7) open to almost flat surfaces oriented in the direction of the

applied load at infinity. The fact that the curves extend slightly into

the half-plane Yl >0 cannot be explained by this local analysis.

We now list the Cauchy stresses as functions of the material coordi-

nates (r,e) in the upper half-plane computed from (1.30), (1.33) and

(4.37), (4.38):

SP1/3r 1/2Ell(e) on +

11 '0 E1 ()o
P Lo(r 4) on

2 - 8/3 = .926 on E+

1 /3 )

T 22 ~(4.46)

iAs

on 91 ,

T 1 2  PO rlE12(e) on

1. o(r2) on 9 ,
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where

1
3 ±os6-- 3 s-f 3co -

El1 (e) = 3A~(o efl Y ., af) +A1 (sin 6-:2 - ose)

E1 2(6) =A1 (sin efl- Tcosef1)+A (Cos ef 2 +Tsine ) , 4.7

and recall A- 2.657. In the hyperbolic region W( the leading terms in

the coordinates do not contribute directly to the stresses Tll and

T1'The functions Eli (6) and E12(e) on [0,7r] are plotted in Fig.lO.

The stresses (4.46) indicate that the material in the neighborhood of the

crack-tip is subjected to deformation that approximates uniaxial tension

parallel to the y2-axls.
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APPENDIX A

In this Appendix solutions to the anti-plane shear crack problem

are found which include two elastostatic shocks that are asymptotically

tangent to rays issuing from the crack-tips.

To this end, let e and &_ be curves defined in (2.18), (2.19)

with s= 0  and A=e*, so that

+9- e:_+±0(r) O< 0r ir o 0 (M~)

where

e(r) -* as r-0 (A.2)

The regions "l,  2 and W described in Figure 11 are defined locally

as follows

:(r'e) '9(r) < e < (r) < <rr ,0 3

Wj = (r,e) le(r)< e< 7r O< r gr o ) (A.3)

Y"2 - 1(r,e) I - 7r<e< -9(r) , O<r:5ro 0).

Keeping in mind the symmetry imposed by the deformation at infinity (2.3)

we assume the displacements admit the representation
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1.
ml

u~r v~e),vl(e)=-Vl(-e) as r-.O on

m2
u-r v2 (e) as r--O on 2 (A. 4)

m 2 2

u~-r v2 (-e) as r-O on 1( ,

where the exponents ma satisfy

O<m a <1 (A.5)

Furthermore, vl(e) and v2(e) are smooth functions on the overlapping

intervals (-eI ,el ) and [I,9 2 ), respectively - the angles e and 62

(yet to be determined)obey B •  and 0<92 < e * " The boundary con-

ditions (2.4) imply

-- 0 , (A.6)

We repeat the analysis resulting in Eqs. (2.10)-(2.15) for the pres-

ent case and find the general solutions for va (e):

m v(e)= V cos (e)v0 +cos20(e)I -/2( 'm  (A.7)

where *(e) is the solution of

(1+ cos 2*) + (V +cos 2 ) 0 (A.8)

The constant V is assumed positive whilea&
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We note also that v +cos 2ip 01 in order that the displacements be

bounded.

In what follows, we consider Ogei.r and refer to (A.4) for the

displacement in the lower half-plane. As in (2.16), let

*1(0) = l/2 ,(A.lO)

so that vl(O)= O. The boundary condition (A.6) is satisfied, without

loss of generality, by stipulating

2 (70 = 0 (A.ll)

The solutions *,(e) and *2(e) governed by (A.8)-(A.ll) are sketched

in Figure 12. The function €i(e) decreases monotonically from a value

of w/2  at e= 0 (as specified by (A.l0)) and approaches the asymptote

= 1/2cos l(-vl )  in the limit e-oD. *2 (e) is a decreasing single

valued expression on the interval [e0r] where

(1 -m2) -
0o= 7"- -+ • tanh (- *tanq,)

m2v v

(A.12)
1

Further, we note that *2(eo)=* o while *2 ()= O.

On substituting i() into (A.7) we find vl(e) and v2(e) are



-59-

smooth functions defined on [O,w) and (eolr ] respectively - the in-

terval (oir) is common to both domains in accordance with the original

assumption (where ei 7r and 62 =o). Also V >0 implies v have

the correct sign, namely

v1(O)>O for O<e<r, v2 (e)>0 for 7tse<e0  (A.13)

Accordingly, the shock angle e* must satisfy

0<*<n (A.14)

An asymptotic equilibrium solution displaying adequate smoothness is

now generated to this anti-plane shear crack problem by matching the dis-

placements and associated tractions across the shock a+ .

Continuity of displacements (A.4) requires

r vl(e) -r v2 (e) as r--O on . (A.15)

On referring to (A.l), (A.2) and (A.13) we conclude that asymptotic equal-

ity (A.15) holds if and only if

ml =m2 =m, vl (e*)=v 2 (e*) (A.16)

This result, together with (A.7) provides one matching condition across

the shock:

V, v cos2 , ( ,) -1 /2(l-m) cos 2 e ) (A.17)

2 Lv+cos2*2(9* cos V,(e*)

Eke.
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where

V 1(32) <<1) (A.18)

a33(--2m) (3

Further, (A.14) indicates that

€-€1B)< ,0<*2(e*)<*,0 (*o < )  (A.19)

The remaining condition to hold on pertains to the matching

of tractions. Equations (1.18), (1.24), (1.25), (A.4) and (A.7) imply

V 1 -v+ cos 2*,l(e*) '1/20l'm) sin2 'Pl(6*)

In view of (A.17), (A.20) is replaced by

sin 2; (*)cos * (e*) = sin 2 2 (e*)cos * 2(*) (A.21)

which, in turn, can be written in the form

€I ( (2(6*)) for 0<*2(6*)<*o . (A.22)

Here, 3(.) is a monotonically decreasing function on [0,* 0 with the

end points 3(O)=w/2 and J(* 0)=4 o .

What remains is to prove the existence of a solution to (A.22) for

an admissible value of e. The shock condition (A.17) can be made to

hold merely through an appropriate choice of the ratio V1/V2. From the

sketch of 3(j2(e)) in Fig.12 it is apparent that we can find an angle

e* (depending uniquely on m) for which the curves *1(e) and J(*2(e))
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intersect and thus satisfy (A.22).

Consequently, there exists a system of solutions to the crack prob-

lem (2.2)-(2.4) in which the displacement field near the crack-tip is of

the form

u--rmv(e) as r-O (-ien) , (A.23)

where

vl(e) for -e*<e<e*

v(e)= (A.24)

Iv 2 (e) for e* < ?r

In (A.23) the exponent O<m<l remains undetermined from the leading

order analysis. The function v(e) on [-ir,n] (A.24) possesses a dis-

continuous first derivative across the elastostatic shock St (A.l),

(A.2). The shock angle e* and v(e) depend on the unknown exponent

m while v(e) is also arbitrary with respect to a multiplicative con-

stant. An appeal to symmetry reveals the displacement on V.. Further-

more, the displacement equation of equilibrium is everywhere hyperbolic

as r-O for -ire% .

We now consider the stresses associated with the deformation (A.23).

The nontrivial components of the actual stress field are obtained, in

terms of the polar coordinates (r,e,z)-(r,e,x3), from (1.18) and(l.19):

Trz 2W (I I )a U ,Tez =2*W'(I1) r @

(A.25)

T zz P 2W'(I1)vuI
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where 1=3+ Ivul2 Referring to (1.24), (A.7), (A.8) and (A.23) yields

-M) (l-m)
T rz ~ lr Cos *(O)p (6). T ez - UT sin *(e)p f (e)

(A.26)
1

T zzr (e) as r-O (e) ,

with

p(e) = Vlv+ cos 2*(e)l 2  (A.27)

In (A.26) and (A.27)

*l(e) for -*<e<e*

*(e) 2(e) for e*<e r , (A.28)

7r-*2(-e) for -1r e<-e*

Finally, V=V l on (-e*,o*) and V=V 2 on (e",,], [-n,-e*) such

that the ratio V is given in (A.17)

The asymptotic solution presented in this Appendix was not found in

[4]. In that study the applied shear at infinity y was assumed small

compared with one and the solutions to the appropriate displacement equa-

tion of equilibrium in the vicinity of the crack-tip where chosen so as

to facilitate matching onto the linear elasticity solution valid else-

where. We note that the hodograph transformation used in [4] to solve

the small-scale problem may not yield all possible solutions. Further-

more, for more severe deformations at infinity in which y is not neces-

sarily small, the results in [4) are no longer appropriate. In such

cases, displacements of the form (A.23) may occur near the crack-tips.
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APPENDIX B

Here, we establish that no smooth solutions of the form (3.9) exist

for the problem (3.3)-(3.8). Accordingly, we let

m
yc.-r a v(e) as r-O (no sum) , (B.1)

uniformly for -w ~e,, where m are constants such that

0 mi n[ml sm 2]< 1 (B.2)

Further, we stipulate

v a , (B.3)

are smooth functions on [-ix]. The symmetry (3.7) associated with this

problem implies

vl (e)=v l(-e) , v2(e)=-v2(-e) (B.4)

The inequality (B.2) assures singular deformation gradients and bounded

displacements at r= O.

Suppose ml= m2 - 0 in (B.l), whereupon the coordinate equations of

equilibrium (3.3) are satisfied, to leading order, if

P (e)=.2 (e )+v(e)- on [-r, ] , (B.5a)

or
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J-Qr p(e), (e)t 0 on [-,] as r-O , (B.5b)

where Q is a positive constant. Equations (B.3), (B.4) are not con-

sistent with (B.5a) on [-ri]. Now assume (B.5b) holds and note that equi-

librium of an arbitrary region i=((r,e)jO<r<r0,el<e< 2,e1<e2 E (-lr')3

requires, in the limit as ro -0, that

-2 -6p (e)=Q on (- ,r) (B.6)

According to the boundary conditions (3.8),

p (e)= on e=-w,7r (B.7)

The results (B.6) and (B.7) are incompatible with the assumed smoothness

of va and thus eliminating the case mI =m 2 = 0.

Now let

ml =m2 =m , O<m<l , (B.8)

in (B.l). Replacing the coordinates in (3.3) by (B.l) and retaining

dominant powers of r, provides two coupled nonlinear differential equa-

tions. Assume the equations hold on (-w,w) and let

vl(e)=p(e)cosY(e), v2(e)=p(e)siny(e) on E-r,1] (B.9)

If

n(e)=6(e)/p(e), x(e)=4(e) on £-nn] , (B.l0)

the differential equations reduce to

L = ... . . .... . .. . . . .. . . .. . .. . . .. . .L " ' ,
" ' '

" " ' . . . ' ... .
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(3m2 + n 2 ) - [T -m(m+4)n-n 3]x+nx3 =0 (B.ll)

2mn- [m;+m 3 _(4-m)n2Jx+(4-3m)x 3 = 0  , (B.12)

on (-1,1). The boundary conditions on the crack faces (3.8) imply

2 22

In view of (B.9) and (B.10), (B.13) is equivalent to

p(e)=0 or x(e) = 0, 6(6)=0 on e=-rx . (B.14)

Solutions of (B.11) and (B.12) subject to (B.14) can be examined in

the phase plane. For convenience, let

n2(0). X(e)=x () on - , (B.15)

and derive, from (B.11) and (B.12), the trajectory equation

dX 2XF((,X) X>0,R>>) (8.16)-=G(Q,X) (>~>),(.6

with

F(o,X) = 2( -m)X- [m 2(2+m) - (2- m)f] (B.17)

2 3 2G(sl,X) =(3m (4- 3m) + (4- 5m)dX + [ (4- 3m)Q- 3m ](m +Q) (B.18)

The trajectories X= X(a) are sketched in Figs. 13 and 14. From

the figures we note that if X(e*)= x2 ( * )= 0 (W(e*)s 1 ) for some

e-*:e*< n then, X(e)_R0 on [-ir,w]. Further, a solution to (B.ll)
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and (B.12) such that Q and X lie on the separatrix can only attain

the values at the equilibrium point, Q2=% and X=O, in the limit

e--o or +o. Consequently, the boundary condition (B.14), in which

x(e) = 0 on e=-,7r, can only be satisfied if x(e) =4(e) - 0 on

From (B.9) we conclude v (e)=c p(e) on [-1,r] while (B.4) implies

the constants c =0.

Assume now the first condition in (B.14) holds and consider, in par-

ticular, the crack face e=ir. From (B.l0)-(B.12) and (B.16)-(B.18) we

obtain an implicit representation for p(e):

p(e) = e .(0) (B.19)

on -7r,w], with

X(e) m3m2 _ "(XU dX (B.20)

f() 4XF(iQ(X) ,X)

X(7r)

In (B.20), the appropriate trajectory Q= (X) (X>O) is chosen with

regard to the boundary condition p(i)= O, which dictates

e)--oo as e-i (B.21)

We investigate the possibility of satisfying (B.21). Suppose T

is a curve Q= o(X) in the phase plane that intersects the straight

line F(Q,X)=O when e=w (see Fig.13). Thus, the integral (B.20)

is singular at the boundary. Further analysis indicates the integrand

is O[(X-X(r))" /2) as X- X(7) on T which implies the condition

(8.21) is not attained. Now let X(T=) =o. It can be shown from
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(B.16)-(B.18) that

(4-5m

Q-0 4(-m) (O<m<4/5)

S=o(logX) (m=4/5) as X-a, (B.22)1

0=001) (4/5<m<1)f

Using (B.22) in (B.20) we again find the integral remains bounded for

O<m<l. It is apparent then, that suitably smooth solutions of (B.11)

and (B.12) cannot be made to satisfy (B.14).

What remains is to account for the case m1 #m 2. Accordingly, let

m2 = m<m1, O<m<l (B.23)

Define the function q(e) on [-w,n] through

J rVq(e) as r-O , (B.24)

where (B.l), (B.23) and (3.5) indicate that the constant v>2(m-l).

Further, we assume q is continuously differentiable on (-ur,7) and is

continuous up to the boundaries e=-i.

Substituting (B.l), (B.23) and (B.24) into the coordinate equilibrium,

equations (3.3)-(3.6) and considering only the leading order terms we ob-

tain two nonlinear differential equations for q and v2 . Eliminating

q from one equation yields

iNote that O< (4-5m)/4(-m)<1 for O m<4/5.
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mv (4mn2 v2 _- 2 )( 2 2 2v2+ 2 4=

2( 2 p2)(V2 +mv 2 )-2(m-l)p (2m 2 +p )
* 3vp =0 , (B.25)

(2m2v2+p 2 ) - (2vmv2+p 2 )q=O , (8.26)

for -<e<,ir where

p 2 (6)m 2v2(6)+ 2(e) ,(B.27)

on [-wr]. Equations (B.1), (B.23), (B.24) infer the boundary conditions

r3vq3 (e) -r2(ml) m2v2(e) as r- o

Ton e=-r,w (B.28)
v2(e)G2(e) =0 J

The technique adopted to solve the differential equation (2.12) is

applied to (B.25). We obtain

mv2(e)=V 2 1cos*(e)I c0 +cos2*(e)J 1cos*(e) , (B.29)

q(e)= Qcos *(e) 1 1-o +cos 2p(e) 1 , (B.30)

on [-,r], where V2 and Q are positive constants and O(e) satisfies

( +cos2*) +( o +cos2*)= O  , (B.31)

on (-,). The constants co - E3 are given by
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3 m
o 2 (m- v) , = 2( - )

(Co # ) , (B.32)

m(l - 2 0 ) 2(v+l)(l- o ) - m
2= 4(- ' 3 4(l-CO)

for O<m<l. We note that if O<E ol any solution O(e) of (B.31)

on the finite interval [-f,7] must necessarily satisfy

0 l0 , PI= COs'I(- O ( o <1l< )  (B.33)

This condition is violated only in the limit e--oo or +oo.

Equation (B.29) accommodates the smoothness requirement and the

parity condition (B.4) if we choose

*((O) =/2 and el - O or cIlz . (B.34)

Taking e,=O in (B.32) gives co = 1-m/2 and v=2/3(m-l). The bound-

ary conditions (B.28), together with (B.29), (B.30) and (B.32), then

imply without loss of generality, that

, (-n)=r and 03=2 (B.35)

Note that for O<m<l, 1/2<e <1 and assume the existence of a smooth

solution to the boundary value problem (B.31), (B.34) and (B.35). Ac-

cordingly, for some value of e on (-w,w) o must attain the value

*I = 1/2cos' (-E ) and thus contradicting the result (B.33). We con-

clude then, that no smooth solutions exist for * and hence v2 on

[-iri. A similar conclusion is reached for the case el> 1.
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FIGURE 1. RESPONSE CURVE IN SIMPLE SHEAR
FOR THE SPECIAL INCOMPRESSIBLE
MATERIAL CHARACTERIZED BY (0:23)
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FIGURE 3. GEOMETRY OF THE GLOBAL CRACK
PROBLEM



-73-

*0=V2 cos'(I3)
iT = 1/2 cos'1 (-W)

- -. . -7- - 4#0

7rr-

Tr 0

FIGURE 4.. SKETCH OF THE PHASE ANGLE
#'(8) VS.9 FOR 0' m'I



-74-

REGION

CRACK EI

FIGURE 5. UNDEFORMED CONFIGURATION
NEAR THE RIGHT CRACK-TIP



-75-

I L(- 2) m -I

22

Mf~ ~~~k ItaInegrra2) m

-2-

f



-76-

kA

k '(4-m) M

-5- 3 -2-40

FIUR . m~)DIGRMFO TEPLN

STRAIN2 CRC3RBE



-77-

.10-

.08 - 9

.06

.04

.02-

.16,

.14-

.12-

.10 p

FIUE .NMEIA SLTON O



-78-

.51

'CRACK FACE

1.010 - i

* + UNDEFORMED CONFIGURATION

0 0.5 Y

FIGURE 9. DEFORMATION IMAGE OF THE PLANE
STRAIN CRACK PROBLEM



-79-

.030-

.025-

.020-

.015 -E 

2 8

.010-

E11 (8)

.005-

0 450 900 1350 1 i80
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FIGURE II. LOCAL GEOMETRY NEAR THE CRACK-TiP
FOR THE ANTI-PLANE SHEAR PROBLEM
TREATED IN APPENDIX A
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